Как записать слово в переменную в c
Перейти к содержимому

Как записать слово в переменную в c

  • автор:

Как присвоить переменной char значение слова

@avp Вообще-то, это не стандартная функция. Это POSIX функция. Ей можно пользоваться, но чтобы код компилировался, нужно либо задать макрообъявление, либо опцию компилятора.

12 дек 2016 в 21:47

Ну, Вы даете. И с каких это пор POSIX не стандарт? Вообще, если в gnu есть, то можно пользоваться. А если где-то ее (или какой другой) и не будет, значит самому надо там реализовать.

12 дек 2016 в 22:05
@avp POSIX — не указ C стандарту.:)
12 дек 2016 в 22:13

POSIX — не указ C стандарту.:) О Господи. А вот это : «POSIX (англ. portable operating system interface — переносимый интерфейс операционных систем) — набор стандартов, описывающих интерфейсы между операционной системой и прикладной программой (системный API), библиотеку языка C и набор приложений и их интерфейсов. » — ничего не значит? Стандарт, в котором оговариваются БИБЛИОТЕКИ С не указ для БИБЛИОТЕК С ?!

13 дек 2016 в 2:43

  • c
  • массивы
  • указатели
  • строковый-литерал

Переменные в языке Си. Объявление переменной в Си

Чтобы хранить в своей программе какие-либо данные, вам понадобятся переменные. Прежде всего, нужно научиться эти переменные в программе создавать. Другими словами, вспоминая нашу аналогию с коробками, чтобы в коробку что-то положить, её, эту самую коробку, хорошо бы сначала где-нибудь раздобыть.

В книжках по программированию процесс создания переменной называют объявлением переменной . Это словосочетание хорошо бы знать, чтобы понимать профессиональную литературу и речь других программистов. Но ещё более важно понимать, что за этим словосочетанием скрывается.

Как объявить переменную?

Для того чтобы объявить переменную, необходимо указать её тип и записать её имя. Ну и не забыть поставить «;». Общая стуктура объявления переменной показана на следующем рисунке.

Общий синтаксис объявления переменной

Рис.1. Общий синтаксис объявления переменной.».

В примере на рисунке мы создаём переменную с именем num, в которой можно будет хранить целые числа. На то, что мы собираемся использовать переменную для хранения целых чисел, указывает тип данных int.

Ещё парочка примеров:

Листинг 1. Объявление переменных

int z; // переменная z целого типа char w; // переменная w символьного типа

Для имён переменных есть одно правило, которое надо будет запомнить.

В качестве имени переменной может выступать любая последовательность символов латинского алфавита, цифр и знака нижнего подчеркивания «_», которая начинается с буквы.

На самом деле, на имя переменной есть дополнительные ограничения, но мы пока в такие детали вдаваться не будем. Давайте лучше посмотрим на примеры правильных и неправильных имён.

Правильные имена переменных

Peremennaya, flag, f3, var4, KolichestvoBukv, fd4s, FLaG, key_number

Неправильные имена переменных

2num – начинается с цифры
num flat – содержит пробел в имени
nomer-telefona – содержит дефис

И ещё один важный момент. В языке программирования Си регистр букв очень важен. Например, переменные с именами flag, FLAG, FlAg, fLAg — это всё различные переменные. Кроме того, есть ряд слов, которые нельзя использовать для названия переменных. Например, int, void, return и другие. Это специальные ключевые слова , которые зарезервированы для нужд самого языка и нигде в другом месте не могут быть использованы.

Кстати, за одно объявление можно создать сразу несколько переменных одного типа.

Листинг 2. Объявление нескольких переменных

int a,c; // объявляем переменные a и c целого типа double x, y, z; // объявляем сразу три вещественные переменные

Всё просто и логично. Сначала указывает тип переменных, а потом их имена, разделённые запятой.

Переменная в памяти компьютера.

Пару слов о том, как выглядит объявление переменной с точки зрения компьютера.

Можно считать, что при объявлении мы сообщаем компьютеру, чтобы он выделил под переменную место в памяти и связал это место определенным именем. Количество места, которое будет выделено в памяти для хранения переменной, зависит от типа этой переменной. Проиллюстрируем эту мысль следующим рисунком.

Листинг 3. Объявление двух переменных

int w; // объявляем целочисленной переменной w double z; // объявляем вещественной переменной z

 Переменные в памяти компьютера

Рис.3. Переменные в памяти компьютера.

На рисунке условно изображена память компьютера как набор ячеек, в каждой из которых может что-то храниться. При этом вещественная переменная занимает две ячейки, а целочисленная всего одну. Это соотношение (два к одному) условное. На самом деле, в вашем компьютере переменная вещественного типа может занимать, например, в четыре раза больше места в памяти, чем целочисленная переменная.

Сохрани в закладки или поддержи проект.

Практика

Решите предложенные задачи: Для удобства работы сразу переходите в полноэкранный режим

Исследовательские задачи для хакеров

  1. Объявите в программе переменную с неправильным именем и попробуйте скомпилировать программу. Посмотрите, какую ошибку выдаст компилятор.
  2. Найдите список всех ключевых слов языка Си. Можно искать в стандарте языка(подсказка: «keywords»), а можно в интернете. Запоминать наизусть их не нужно, но разок посмотреть на них стоит.

Дополнительные материалы

  • В ваших программах не стесняйтесь давать переменным длинные имена. Хорошо, если по имени переменной можно будет сразу понять, что в ней хранится. Есть два основных способа записи длинных имён переменных: ВерблюжьяНотация и змеиная_нотация. Подробнее о плюсах и минусах обоих подходов можно почитать по следующим ссылкам: Хабрахабр и Типичный программист.

Переменные

Теги: Си переменные. char, int, unsigned, long, long long, float, double, long double, long float, lexical scoping. Объявление переменных. Область видимости. Инициализация переменных. Имена переменных. Экспоненциальная форма.

Переменные

П еременные используются для хранения значений (sic!). Переменная характеризуется типом и именем. Начнём с имени. В си переменная может начинаться с подчерка или буквы, но не с числа. Переменная может включать в себя символы английского алфавита, цифры и знак подчёркивания. Переменная не должна совпадать с ключевыми словами (это специальные слова, которые используются в качестве управляющих конструкций, для определения типов и т.п.)

А также ряд других слов, специфичных для данной версии компилятора, например far, near, tiny, huge, asm, asm_ и пр.

Например, правильные идентификаторы
a, _, _1_, Sarkasm, a_long_variable, aLongVariable, var19, defaultX, char_type
неверные
1a, $value, a-long-value, short

Си — регистрозависимый язык. Переменные с именами a и A, или end и END, или perfectDark и PerfectDarK – это различные переменные.

Типы переменных

  • 1) Размер переменной в байтах (сколько байт памяти выделит компьютер для хранения значения)
  • 2) Представление переменной в памяти (как в двоичном виде будут расположены биты в выделенной области памяти).

Целые

  • char — размер 1 байт. Всегда! Это нужно запомнить.
  • short — размер 2 байта
  • int — размер 4 байта
  • long — размер 4 байта
  • long long — размер 8 байт.

Указанные выше значения характерны для компилятора VC2012 на 32-разрядной машине. Так что, если ваша программа зависит от размера переменной, не поленитесь узнать её размер.

Теперь давайте определим максимальное и минимальное число, которое может хранить переменная каждого из типов. Числа могут быть как положительными, так и отрицательными. Отрицательные числа используют один бит для хранения знака. Иногда знак необходим (например, храним счёт в банке, температуру, координату и т.д.), а иногда в нём нет необходимости (вес, размер массива, возраст человека и т.д.). Для этого в си используется модификатор типа signed и unsigned. unsigned char — все 8 бит под число, итого имеем набор чисел от 00000000 до 11111111 в двоичном виде, то есть от 0 до 255 signed char от -128 до 128. В си переменные по умолчанию со знаком. Поэтому запись char и signed char эквивалентны.

Таб. 1 Размер целых типов в си.

Тип Размер, байт Минимальное значение Максимальное значение
unsigned char 1 0 255
signed char
( char )
1 -128 127
unsigned short 2 0 65535
signed short
( short )
2 -32768 32767
unsigned int
( unsigned )
4 0 4294967296
signed int
( int )
4 -2147483648 2147483647
unsigned long 4 0 4294967296
signed long
( long )
4 -2147483648 2147483647
unsigned long long 8 0 18446744073709551615
signed long long
( long long )
8 -9223372036854775808 9223372036854775807

sizeof

В си есть оператор, который позволяет получить размер переменной в байтах. sizeof переменная, или sizeof(переменная) или sizeof(тип). Это именно оператор, потому что функция не имеет возможности получить информацию о размере типов во время выполнения приложения. Напишем небольшую программу чтобы удостовериться в размерах переменных.

#include #include int main() < char c; short s; int i; long l; long long L; //Вызов sizeof как "функции" printf("sizeof(char) = %d\n", sizeof(c)); printf("sizeof(short) = %d\n", sizeof(s)); printf("sizeof(int) = %d\n", sizeof(i)); printf("sizeof(long) = %d\n", sizeof(l)); printf("sizeof(long long) = %d\n", sizeof(L)); //Вызов как оператора printf("sizeof(char) = %d\n", sizeof c); printf("sizeof(short) = %d\n", sizeof s); printf("sizeof(int) = %d\n", sizeof i); printf("sizeof(long) = %d\n", sizeof l); printf("sizeof(long long) = %d\n", sizeof L); _getch(); >

(Я думаю ясно, что переменные могут иметь любое валидное имя). Эту программу можно было написать и проще

#include #include int main() < printf("sizeof(char) = %d\n", sizeof(char)); printf("sizeof(short) = %d\n", sizeof(short)); printf("sizeof(int) = %d\n", sizeof(int)); printf("sizeof(long) = %d\n", sizeof(long)); printf("sizeof(long long) = %d\n", sizeof(long long)); //нельзя произвести вызов sizeof как оператора для имени типа //sizeof int - ошибка компиляции _getch(); >

В си один и тот же тип может иметь несколько названий
short === short int
long === long int
long long === long long int
unsigned int === unsigned

Типы с плавающей точкой

  • float — 4 байта,
  • long float — 8 байт
  • double — 8 байт
  • long double — 8 байт.
Таб. 2 Размер типов с плавающей точкой в си.

Тип Размер, байт Количество значащих знаков мантиссы Минимальное значение Максимальное значение
float 4 6-7 1.175494351 E – 38 3.402823466 E + 38
double 8 15-16 2.2250738585072014 E – 308 1.7976931348623158 E + 308

Переполнение переменных

Си не следит за переполнением переменных. Это значит, что постоянно увеличивая значение, скажем, переменной типа int в конце концов мы «сбросим значение»

#include #include void main() < unsigned a = 4294967295; int b = 2147483647; //Переполнение беззнакового типа printf("%u\n", a); a += 1; printf("%u", a); //Переполнение знакового типа printf("%d\n", b); b += 1; printf("%d", b); getch(); >

Вообще, поведение при переполнении переменной определено только для типа unsigned: Беззнаковое целое сбросит значение. Для остальных типов может произойти что угодно, и если вам необходимо следить за переполнением, делайте это вручную, проверяя аргументы, либо используйте иные способы, зависящие от компилятора и архитектуры процессора.

Постфиксное обозначение типа

  • 11 — число типа int
  • 10u — unsigned
  • 22l или 22L — long
  • 3890ll или 3890LL — long long (а также lL или Ll)
  • 80.0f или 80.f или 80.0F — float (обязательно наличие десятичной точки в записи)
  • 3.0 — число типа double

#include #include int main()

Следующий код, однако, не будет приводить к ошибкам, потому что происходит неявное преобразование типа

int a = 10u; double g = 3.f;

Шестнадцатеричный и восьмеричный формат

В о время работы с числами можно использовать шестнадцатеричный и восьмеричный формат представления. Числа в шестнадцатиричной системе счисления начинаются с 0x, в восьмеричной системе с нуля. Соответственно, если число начинается с нуля, то в нём не должно быть цифр выше 7:

#include #include void main()

Экспоненциальная форма представления чисел

Э кспоненциальной формой представления числа называют представление числа в виде M e ± p , где M — мантиса числа, p — степень десяти. При этом у мантисы должен быть один ненулевой знак перед десятичной запятой.
Например 1.25 === 1.25e0, 123.5 === 1.235e2, 0.0002341 === 2.341e-4 и т.д.
Представления 3.2435e7 эквивалентно 3.2435e+7
Существеут и другое представление («инженерное»), в котором степень должна быть кратной тройке. Например 1.25 === 1.25e0, 123.5 === 123.5e0, 0.0002341 === 234.1e-6, 0.25873256 === 258.73256e-3 и т.д.

Объявление переменных

В си переменные объявляются всегда в начале блока (блок — участок кода ,ограниченный фигурными скобками)

При объявлении переменной пишется её тип и имя.

int a; double parameter;

Можно объявить несколько переменных одного типа, разделив имена запятой

long long arg1, arg2, arg3;
#include #include int main() < int a = 10; int b; while (a>0) < int z = a*a; b += z; >>

Здесь объявлены переменные a и b внутри функции main, и переменная z внутри тела цикла. Следующий код вызовет ошибку компиляции

int main()

Это связано с тем, что объявление переменной стоит после оператора присваивания. При объявлении переменных можно их сразу инициализировать.
int i = 0;
При этом инициализация при объявлении переменной не считается за отдельный оператор, поэтому следующий код будет работать

int main()

Начальное значение переменной

О чень важно запомнить, что переменные в си не инициализируются по умолчанию нулями, как во многих других языках программирования. После объявления переменной в ней хранится «мусор» — случайное значение, которое осталось в той области памяти, которая была выделена под переменную. Это связано, в первую очередь, с оптимизацией работы программы: если нет необходимости в инициализации, то незачем тратить ресурсы для записи нулей (замечание: глобальные переменные инициализируются нулями, почему так, читайте в этой статье).

#include #include int main()

Если выполнять эту программу на VC, то во время выполнения вылетит предупреждение
Run-Time Check Failure #3 — The variable ‘i’ is being used without being initialized.
Если нажать «Продолжить», то программа выведет «мусор». В многих других компиляторах при выполнении программы не будет предупреждения.

Область видимости переменной

П еременные бывают локальными (объявленными внутри какой-нибудь функции) и глобальными. Глобальная переменная видна всем функциям, объявленным в данном файле. Локальная переменная ограничена своей областью видимости. Когда я говорю, что переменная «видна в каком-то месте», это означает, что в этом месте она определена и её можно использовать. Например, рассмотрим программу, в которой есть глобальная переменная

#include #include int global = 100; void foo() < printf("foo: %d\n", global); >void bar(int global) < printf("bar: %d\n", global); >int main()

Будет выведено
foo: 100
bar: 333
Здесь глобальная переменная global видна всем функциям. Но аргумент функции затирает глобальную переменную, поэтому при передаче аргумента 333 выводится локальное значение 333.
Вот другой пример

#include #include int global = 100; int main()

Программа выведет 555. Также, как и в прошлом случае, локальная переменная «важнее». Переменная, объявленная в некоторой области видимости не видна вне её, например

#include #include int global = 100; int main() < int x = 10; < int y = 30; printf("%d", x); >printf("%d", y); >

Этот пример не скомпилируется, потому что переменная y существует только внутри своего блока.
Вот ещё пример, когда переменные, объявленные внутри блока перекрывают друг друга

#include #include int global = 100; int main() < int x = 10; < int x = 20; < int x = 30; printf("%d\n", x); >printf("%d\n", x); > printf("%d\n", x); getch(); >

Программа выведет
30
20
10
Глобальных переменных необходимо избегать. Очень часто можно услышать такое. Давайте попытаемся разобраться, почему. В ваших простых проектах глобальные переменные выглядят вполне нормально. Но представьте, что у вас приложение, которое

  • 1) Разрабатывается несколькими людьми и состоит из сотен тысяч строк кода
  • 2) Работает в несколько потоков

Во-первых, глобальная переменная, если она видна всем, может быть изменена любой частью программы. Вы изменили глобальную переменную, хотите её записать, а другая часть программы уже перезаписала в неё другое значение (на самом деле это целый класс проблем, которые возникают в многопоточной среде). Во-вторых, при больших размерах проекта не уследить, кто и когда насоздавал глобальных переменных. В приведённых выше примерах видно, как переменные могут перекрывать друг друга, то же произойдёт и в крупном проекте.

Безусловно, есть ситуации, когда глобальные переменные упрощают программу, но такие ситуации случаются не часто и не в ваших домашних заданиях, так что НЕ СОЗДАВАЙТЕ ГЛОБАЛЬНЫХ ПЕРЕМЕННЫХ!
Переменные могут быть не только целочисленными и с плавающей точкой. Существует множество других типов, которые мы будем изучать в дальнейшем.

ru-Cyrl 18- tutorial Sypachev S.S. 1989-04-14 sypachev_s_s@mail.ru Stepan Sypachev students

email

Всё ещё не понятно? – пиши вопросы на ящик

Переменные в C++: типы данных и примеры

обложка статьи

Всем привет! В данной статье я бы хотел рассказать о важнейшем компоненте в программировании — переменных. Без них очень трудно представить полноценную программу, ведь они позволяют взаимодействовать с пользователем, а также упрощают многие рутинные действие. Именно поэтому мы приступаем к изучению переменных!

Что такое переменные?

Переменные — это выделенные ячейки в памяти под определенный тип данных. Сами же ячейки постоянно хранятся на компьютере пользователя. Их мы можем заполнять различными значениями, модифицировать и использовать в наших целях.

Стандартные типы данных в C++

Прежде чем мы продолжим знакомство с переменными в C++, давайте узнаем, значениями какого типа мы можем заполнять созданные нами переменные.

Вот список стандартных типов данных:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *